te indicada, y admitamos que las fuerzas aplicadas sobre él se hacen equilibrio. Es evidente que éste no se alterará, si elegimos en el espacio tres puntos fijos y los unimos al sistema por medio de pirámides que tengan sus vértices en los puntos de éste y sus bases en el triángulo formado por aquéllos. Siendo h el número de puntos que forman el sistema, las aristas de los tetraedros serán 5h, unidas con las coordenadas primitivas por las ecuaciones siguientes:

$$m = \sqrt{(x-\alpha)^2 + (y-6)^2 + (z-\gamma)^2}$$

$$n = \sqrt{(x'-\alpha)^2 + (y'-6)^2 + (z'-\gamma)^2}$$

su número de 5h.

Si entre estas ecuaciones y las primeras de condicion eliminamos las coordenadas del sistema, las expresiones de enlace serán funciones de las distancias de los puntos del sistema á los fijos, y como el conjunto de cuerpos que se consideran están en equilibrio, la cuestion entra en el caso general sin modificacion, y por lo tanto las componentes de las fuerzas que se hacen equilibrio sobre el sistema tendrán la forma general anteriormente encontrada. Con esto queda, pues, demostrado que las expresiones encerradas en los paréntesis de la ecuacion 5. son lo que habiamos enunciado.

Llamemos, pues, X, Y, Z... etc., á estas cantidades, y la ecuacion 5.ª se trasformará en

$$X \frac{dx}{dt} + Y \frac{dy}{dt} + \dots = 0;$$
 (\alpha)

llamemos, por último, P á las resultantes de X, Y yZ, y se tendrá evidentemente

$$X \frac{dx}{dt} + Y \frac{dy}{dt} + Z \frac{dz}{dt} = P \frac{ds}{dt} \cos Ps$$

Como se comprueba fácilmente dividiendo los dos miembros de la expresion anterior por P $\frac{ds}{dt}$

Introduciendo esta condicion en la ecuacion a se trasforma finalmente en

$$P \frac{ds}{dt} \cos Ps + p' \frac{ds'}{dt} \cos P's \dots = 0$$

que demuestra nuestro teorema.

Colorario. Si llamamos
$$\frac{ds}{dt} \cos Ps = \frac{\delta p}{dt}$$
; $\frac{ds'}{dt} \cos P's = \frac{\delta p'}{dt}$..., etc., la ecuacion anterior se traforma en

$$P = \frac{\delta p}{dt} + P' = \frac{\delta p'}{dt} \cdot \cdot \cdot = 0$$
,

y si ahora multiplicamos ambos miembros por dt, con objeto de sustituir á las velocidades proyectadas espacios recorridos en tiempos infinitamente pequeños, se tendrá

$$P \partial p + P' \partial p' \dots = 0;$$

fórmula que la podemos traducir de la manera siguiente:

Si un cierto número de cuerpos que forman un sistema se mueven en el espacio, de tal manera que los caminos recorridos por ellos no alteran sus recíprocos enlaces, la suma de los productos de las fuerzas que en un instante dado se harian equilibrio sobre el sistema, por los espacios recorridos por los cuerpos en un tiempo infinitamente pequeño, proyectados sobre las direcciones de las fuerzas, es igual ú cero.

Corolario segundo. Este teorema se puede aplicar lo mismo á los sistemas en equilibrio que á aquellos que están en movimiento, suponiendo en los primeros que la posicion que se considera es aquella con quien coincide el sistema que primitivamente estaba en movimiento en un instante dado.

E. DE ECHEGARAY.

TABLAS

DE EQUIVALENCIAS DE GRADOS Y MINUTOS

CENTESIMALES A SEXAGESIMALES
Y VICE-VERSA.

Á LOS SRES. INGENIEROS Y AYUDANTES DE CAMINOS, MINAS Y AGRÓNOMOS.

La division dada á los limbos de los instrumentos topográficos modernos en grados centesimales, y la necesaria aplicacion de problemas y operaciones calculadas ya para el sistema de grados sexagesimales, así como el empleo simultáneo de instrumentos que tengan las dos clases de divisiones, hacen necesario el uso de estas tablas, evitándose en cada caso la operacion de buscar la equivalencia, que ocupa un tiempo siempre precioso para los que se dedican á esta clase de trabajos.

Para evitar esta pérdida de tiempo he calculado estas facilisimas tablas, cuyo mérito es sólo el buen deseo de que sean útiles á aquellos á quienes las dedico.

José Antonio Corral.

Equivalencia exacta.

Centésimas de grado centesimal á minutos, segundos y terceros sexagesimales.

Centésimas.	Minutos.	Segundos.	Terceros.
0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,40 0,41 0,43 0,43 0,46 0,47 0,20 0,21 0,22 0,24 0,22 0,24 0,22 0,24 0,26 0,27 0,28 0,27 0,31 0,31 0,36 0,37 0,38 0,36 0,47 0,48 0,49 0,49 0,20 0,21 0,24 0,25 0,27 0,28 0,31 0,31 0,44 0,45 0,46 0,47 0,48 0,49 0,20 0,21 0,21 0,22 0,23 0,31 0,31 0,44 0,45 0,46 0,47 0,48 0,49 0,49 0,49 0,49 0,49 0,49 0,49 0,49	041223344556778899004122344455667788999004122334455667788999004122334356	32 4 7 9 2 4 4 6 9 1 4 6 9 1 6 9 1	2482604826048260482604826048260482604826

Centésimas.	Minutos.	Segundos.	Terceros.
0,68	36	43	12
0,69	37	15	36
0,70	37	48	00
0,71	38	20	24
0,71	38	52	48
0,73	39	$\tilde{25}$	12
0.74	39	57	36
0,74 0,75	40	30	00
0,76	44	2	24
0,77	41	34	48
0,77 0,78	42	7	12
0,79	42	39	36
0,80	43	12	00
0,81	43	44	24
0,82	44	16	48
0,83	44	49	12
0,84	45	21	36
0,85	45	54	00
0,86	46	26	24
0,87	46	58	48
0,88	47	31	12
0,89	48	3	36
0,90	48	36	00
0,94	49	8	24
0,92	49	40	48
0,93	50	13	12
0.94	50	45	36
0,95	51	18	00
0,96	54	50	24
0,97	52	22	48
0.98	52	35	12
0,99	53	27	36
4,00	54	00	00

Equivalencia exacta.

Grados centesimales á grados y minutos sexagesimales.

CENTESIMALES.	SEXAGESI	MALES.
Grados.	Grados.	Minutos.
1	0	54
	1	48
~	2	42
2 3 4 5	3 .4 .5	36
1	1	3θ
6		24
7	6	18
8	7	12
9	8	6
10	9	Ö
N'	9	54
11	10	48
12	111	42
13	12	36
14	13	30
15	13	24
16	15	18
17		12
48	16	6
19	17	0
20	18	54
21	18	48
22	19	40 42
23	20	36
24	21	36
25	22	24
26	23	
27	24	18
28	25	12
i.	I	1

	CHT LATE	TWATES
CENTESIMALES.	Grados.	. Minutos.
Grados.		
29 30	$\begin{array}{c} 26 \\ 27 \end{array}$	6 0
31	$\tilde{27}$	54
32	28	48
33	29	42
34	30	36
35	31	30
36	32	24
37 38 .	33 34	18 12
39	35	6
40	36	ŏ
41	36	54
42	37	48
43	38	42
44	39	36
45	40	30
46 47	$\begin{array}{c} 44\\42\end{array}$	24 18
48	43	12
49	44	6
50	45	ŏ
54	45	54
52	46	48
53	47	42
54	48	36
55 56	$\begin{array}{c} 49 \\ 50 \end{array}$	$\frac{30}{24}$
57 57	54	18
58	52	12
59	53	6
60	54	0
64	54	54
62 63	55 ne	48 42
64	56 57	36
65	58	30
66	59	24
67	60	18
68	61	12
69	62	6
70	63	0
71 72	63 64	54 48
$7\overline{3}$	65	42
74	66	36
75	67	30
76	68	24
77	69	18
78 79	70	12
79 80	7i 72	6 0
80 81	72 72	5 4
82	$7\tilde{3}$	48
83	74	42
84	74 75	36
85	76	30
86	77	24
87	78	18
88 89	79 80	12 6
90	81	Ö
91	81	54
92	82	48
93	83	42
94	84	36
95	85	30
96	86	24
97 98	87 88	18 12
98	89	1 6
	90	ŏ
100		

Equivalencia aproximada hasta diez millonesimas de segundos sexagesimales a grados centesimales.

Segundos á grados centesimales.

Segundos.	Grados centesimales.
4	0,000308641975308
2	0,000617283950617
2 4	0,001234567901234
6.	0,00185185185485
1 8	0,0024691
10	0,0030864
12	0,0037036
14	0,0043209
46	0,0049382
18	0,005555
20	0,0061728
22	0,0067900
24	0,0074073
26	0.0080246
28	0,0086419
30	9,0092592
32	0,0098765
34	0,0104938
36	0,044444
38	0,0447283
40	0,0123456
42	0,0429626
44	0,0135802
46	0.0141975
48	0,0148148
50	0,0154320
52	0,0160493
54	0,0490366
56	0,0472839
58	0,0479042
60=1'	0,0485485
<u> </u>	1

Equivalencia aproximada al infinito, de minutos sexagesimales á grados centesimales.

Minutos.	Grados centesimales.
1	0,0485485485485
2	0,0370370
3	0,055555
4	0,0740740
l ä	0,0925925
2 3 4 5 6	0,111111
	0,4296296
7 8	0,1481481
9	0,1666666
10	0,1851851
11	0,2037037
12	0,2222222
13	0,2407407
14	0,2592592
15	0,2777777
16	0,2962962
17	0,3148148
18	0,3333333
19	0,3518518
20	0,3703703
24	0,3888888
22	0,4074074
23	0,4259259
24	0,444444
25	0,4629629

Minutos.	Grados centesimales.
26	0,4814814
27	0,5000000
28	0,5485185
29	0,5370370
30	0,555555
34	0,3740740
32	0,5925925
33	0,6141111
34	0,6296296
35	0,6481481
36	0,666666
37	0,6851854
38	0,7037037
39	0,7222222
40	0,7407407
41	0,7392392
42	0,7777777
43	0,7962962
44	0,8148148
45	0,8333333
46	0,8548548
47	0,8703703
48	0,888888
49	0.9074074
50	0,9259239
54	0,9444444
52	0,9629629
53	0,9814814
11 54	1,0000000
55	4,0185185
56	4,0370370
57	4,055555
58	4,0740740
59	4,0923925
60 == 10	4,444444
li .	

Equivalencia aproximada de grados sexagesimalos à grados centesimales.

Grados sexagesimales.	Grados centesimales,
1 2 3 4 5 6 7 8 9 10 41 42 13 44 45 46 47 48	1,4411141414 2,222222 3,3333333 4,4444444 5,355555 6,6666666 7,7777777 8,888888 40,0000000 41,141414 42,2222222 13,3333333 44,444444 45,555555 46,666666 47,7777777 48,888888 20,0000000 24,1414111 22,222222
24 22 23 24 25 26 27	23,333333 24,1444444 23,355333 26,6666666 27,7777777 28,888888 30,0000000

Credos sarageimales	Grados centesimales.	
Grados sexagesimales.	Grados Centestinales.	
28	31,111111	
29	32,2222222 33,333333	1
30 31	34,4441444	
32	35,55555	1
33	36,666666	1
34	37,777777	\parallel
35 36	38,8888888 40,0000000	1
37	41,111111	1
38	42,222222	
39	43,3333333	1
40	44,444444 45,555555	
41 / 42	46,666666	1
43	47,777777	
44	48,8888888	1
45	50,0000000	1
46 47	51.111111 52.222222	
48	53,3333333	
49	54,444444	
50	55,555555	
51	36,666666	
52 53	57,7777777 58,88888	
54	60,0000000	
55	61,141444	
56	(32,222,222	
57	63,3333333 64,444444	
58 59	65,555555	
60	66,666666	
61	67,777777	ı
62	68,888888	
63 64	70,0000900 71,114111	
65	72,2222222	- (
66	73,3333333	
67	74,4441444	
68	75,555555 76,666666	
70	77,7777777	
71	78,888888	
72	80,0000000	
73	81,4441144 82,2222222	
74 75	83,3333333	
76	84,444444	
77	85,555555	
78	86,666666	
79 80	88,888,888 88,888,888	
81	90,0000000	
82	91,111111	
83	92,222222	
84	93,3333333 94,444444	
85 86	95,555555	
87	96,666666	
88	97,777777	
89	98,888,888	
90	100,000000	

En las reglas logaritmicas que acompañan á los instrumentos taqueométricos de division centesimales, es siempre entretenida la operacion de hallar tangentes para ángulos de menos de un grado; por lo que, con las tablas de las dos últimas páginas, basta multiplicar el generador ó distancia hallada,

por las cifras de la 2. columna en la línea correspondiente al ángulo dado, y se obtendrá la tangente que se busca.

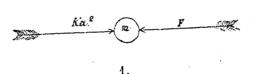
EJEMPLO.

Ángulo 0,28. Distancia, 160 metros, tendrémos 160 \times 0,00436 = 0,6976.

Tambien en ciertos tanteos de rasantes de ferrocarriles o carreteras ocurre, al necesitar una pendiente dada, la aplicacion de estas tablas, cuando se emplea un instrumento de division centesimal.

Por ejemplo: ajustando un ángulo 0,66 para visual ó lectura, tendrémos la pendiente de el 1/00, y siendo el ángulo de 0,96, sería el 1,5/00; y así pueden obtenerse otras intermedias.

Centésimas.	Tangente por metro.	
0,52	0,00814	
0,54	0.00846	
0,56	0,00872	
0,58	0.00944	
0.60	0.00940	
0,62	0.00968	
0,64	0,00989	
0,66	0,01023	
0,68	0,01032	
0,70	0,01088	
0,72	0.01145	
0,74	0,01176	
0,76	0,01199	
0,78	0.01221	
0,80	0,01250	
0,82	0,01279	
0,84	0,01313	
0,86	0,01346	
0,88	0,04367	
0,90	0,04396	
0,92	0,01442	
0,94	0,01469	
0,96	0,01502	
0,98	0,01532	
1,00	0,04570	


Tangentes que corresponden à 1 metro de horizontal y angulos de centésimas de grado centesimal hasta medio grado.

Centésimas.	Tangente por metro.
0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20 0,22 0,24 0,26	0,00029 0,00058 0,00087 0,00146 0,00145 0,00174 0,00203 0,00233 0,00278 0,00299 0,00338 0,00369 0,00407

Centesimas.	Tangente por metro.	
0,28 0,30 0,32 0,34 0,36 0,38 0,40 0,42 0,44 0,46 0,48	0,00436 0,00465 0,00494 0,00536 0,00566 0,00599 0,00628 0,00649 0,00684 0,00704 0,00743	

Obligado por la amistad que me une á una respetable persona á exponerle mi opinion sobre los medios que proponía para resolver el problema de la navegacion aérea, he debido antes redactar los siguientes apuntes sobre su estado actual y sobre las dificultades hoy insuperables que se ofrecen al tratar de mejorarlo, siendo mi único objeto, al publicarlos, desvanecer opiniones erróneas que sobre este asunto se oyen todos los dias (1).

APUNTES SOBRE LA NAVEGAGION AÉREA POR MEDIO DE GLOBOS.

Como estudio preliminar, veames que movimiento será el de un cuerpo de masa m, dentro de la atmósfera tranquila y sometido á la accion de una fuerza constante F, obrando en el mismo punto y direccion que la resistencia pasiva del aire. Sabido es que esta fuerza resistente es proporcional al cuadrado de la velocidad y á la proyeccion ω de la superficie del cuerpo m sobre un plano perpendicular á la direccion del movimiento: podrá, pues, expresarse por $K\omega v^2$, siendo v la velocidad al cabo del tiempo t, ω la superficie resistente y K un coeficiente numérico que depende de la forma del cuerpo m, de la densidad del aire, etc. El movimiento es evidentemente rectilineo, y sus ecuaciones generales son

⁽¹⁾ La Redaccion deja la responsabilidad de las apreciaciones que aparecen en el presente artículo á su autor, como lo hace siempre de los escritos que inserta firmados. Trabajos posteriores á los ensayos de Giffard y Dupuy de Lôme, entre ellos los estudios de Condenons y Forlanini, no permiten aceptar en absoluto como inmejorables las condiciones de los aparatos que se consideran como tipo en este artículo.