Colección de puentes de altura estricta'

Justificación de los detalles estructurales

Series 1." y 2."—Como en las dos series se ha utilizado el pórtico sencillo, justificaremos simultáneamente los detalles estructurales adoptados.

Hemos partido de la luz 6 m, considerando que, hasta tanto pueden emplearse losas apoyadas, pues no conviene reducir el espesor por bajo de los 25 cm

que corresponden a aquélla.

Utilizamos dinteles de losa, hasta 10 m de luz inclusive, con espesores límites de 37 cm. en el centro y 50 en los extremos, partiendo otra vez de 10 m para las soluciones de vigas que llegan hasta los 18, luz en que limitamos la serie segunda, juzgando como topes los espesores de viga que le corresponden: 15 centímetros en el centro y 110 en los arranques.

En la primera serie hacemos variar la luz de metro en metro, constando, por consiguiente, de modelos para 6, 7, 8, 9 y 10; en la segunda el intervalo es 2 metros y los modelos 10, 12, 14, 16 y 18.

La adaptación de los modelos a las diferentes alturas que pueden presentarse en la práctica se hace fácilmente, variando el espesor del tabique de modo que su momento de inercia sea proporcional a la altura, consiguiendo así un aumento de sección proporcionada a los esfuerzos, e identidad de condiciones en la sustentación del dintel.

Los cálculos del pórtico se han desarrollado por el procedimiento norteamericano conocido con el nombre de *slope-deflection*, y aunque no varía sino en detalles del correspondiente a "masas elásticas" co-

Fig. 1. Deformaciones de una barra

rrientemente empleado en nuestro país, vamos a exponerlo sucintamente.

Considerando una barra tipo pieza prismática, empotrada elásticamente en sus extremos y con secciones de momento de inercia constante, el par de empotramiento, que aparece en el extremo izquierdo, al imprimir una desviación angular θ_{σ} a esta sección, es:

$$M_o = 4E \frac{f}{L} \theta_o \tag{1}$$

En las mismas condiciones el par de empotramiento que aparece al imprimir la desviación θ_1 en la sección de empotramiento opuesta (es decir, la derecha) es:

$$\mathcal{M}_{o}' = 2E \frac{I}{L} \theta_{1}$$
 [2]

(Comparando esta expresión con la anterior deducimos que el factor de transmisión es 0,50.)

Y el par correspondiente a una desviación lineal Δ perpendicular al eje de la barra:

$$M_o^{\prime\prime\prime} = 6E \frac{I}{L} \frac{\Delta}{L} \tag{3}$$

La deducción de estas expresiones no necesita aclaración especial; pueden obtenerse por cualquiera de los procedimientos elásticos: teorema de Castigliano, método de los trabajos virtuales, teorema de las áreas, etc.

Si de la pieza prismática con momento de inercia constante pasamos al caso de inercia variable, recordando las definiciones de coeficiente elástico y factor de transmisión, vemos que será preciso introducir estos dos coeficientes, afectando el primero a la masa elástica // y el segundo a los términos en que intervengan desviaciones angulares en extremos opuestos.

Así las fórmulas generales, al tener en cuenta giros y desplazamientos normales de los apoyos, serán:

Extremo izquierdo:

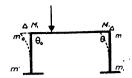
$$M_o = 4Ek_o \frac{1}{L} \left[\theta_o + \alpha_o \theta_1 - (1 + \alpha_o) \frac{\Delta}{L} \right] + \mu_o \qquad [4]$$

Extremo derecho:

$$M_1 = 4Ek_1 \cdot \frac{I}{L} \left[\theta_1 + \alpha_1 \theta_0 - (1 + \alpha_1) \frac{\Lambda}{L} \right] + \mu_1 \qquad [5]$$

donde:

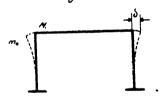
ko y k₁ son los coeficientes elásticos izquierdo y derecho.


 α_0 y α_1 , los factores de transmisión idem id. μ_0 y μ_1 , los momentos de empotramiento perfecto, originados por los esfuerzos actuantes.

El sentido positivo para los desplazamientos lineales y angulares es el de las agujas de un reloj, y también para los pares de empotramiento, debiendo advertirse que al considerar directamente a éstos es preciso tener en cuenta que los momentos flectores, en la convención corriente, coinciden en signo para el extremo izquierdo, pero tienen el contrario en el derecho.

La aplicación del procedimiento a una estructura es de sobra conocida: se llega a un sistema de ecuaciones lineales en el que figuran dos ecuaciones por barra, análogas a las [4] y [5], y una ecuación por nudo, que denota la indeformabilidad del enlace, expresando la anulación mutua de todos los pares de empotramiento. Con estas ecuaciones tenemos bastante para resolver el problema cuando podemos prescindir de las deformaciones lineales en los nudos, o éstas son debidas a causas exteriores (variación termohigrométrica o asiento accidental de los apoyos); pero en el caso contrario 1, dentro del cual queda el

Véase el número anterior, página 41.


Cuadro núm. 1. Cálculos para actuación de una fuerza

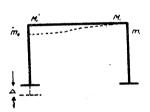
			Fue	urea e	1	M,	M,	m,	m;
			azL	0.44	0.54	0.63 0+000	0250-0830	2034-10414	0411-12031
a = 0.20	, [20.145 2:0028			0 098	0.054	0.016	0,016
10 = 2	.	4	l	0 161 = سو 101 :0 = سو		0.127	0.104	0.046	0.069
	kp =				= 'n' : = 0.136		0.122	0.061	0.061
	k.		M=0146	Į		0.1113	0.0480	00198	00137
	•	8		0/6/ = مر 0/6/ و ما		0.1367	0:1046		0.0845
					p = p = = 0136	0.125	0.125	0.0735	0.0735
			0.1251	0.2501	0.500L		ļ		ļ
a = 0.25	5		= 0.005 = 0.010 = 0.010			0,0685	0.0325	0.0072	0.0435
4 = 2	:	4		µ=0,190 µ=0054		0.1217	0.0664	0.0193	0.0748
ľ	$\frac{k_p}{k_v} =$					0.125	0.125	0.062	0.062
			01251	02501	0500 L	ļ			
1	κ,	8				0.0785	0.0275	0.0092	0.0506
1						0.1357	0.0590	0.0242	0.0914
ł	•				<u> </u>	0.1275	0.1275	0.075	0.075
			021	0.44	0.51	063-1025	10264 +053	063,0041	0412-10034
a=0.2	.0		0/65 = سر 0/02 = سر			0.103	0.053	0.014	0.064
$\frac{i_1}{i_2} = 5$	k,	= 4		14 = a10	4	0.132	0.107	0.047	0.075
	k	- 7			. سر ۽ مز 2016ء -		0.126	0.065	0.065

Cuadro núm. 2. Variación de temperatura y asiento

Variacion de femperatura

Generations
$$M_1 + m_0 = 0$$

$$M_1 = 4Ek_v \times \theta$$


$$m_0 = 2Ek_p (2\theta - 3\frac{\delta}{k})$$

$$m_0 = 2Ek_p (\theta - 3\frac{\delta}{k})$$

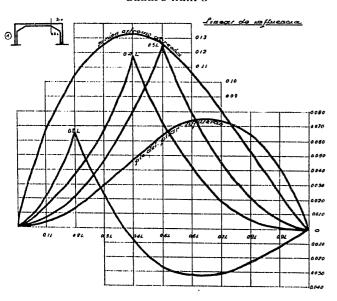
$$\delta = 0.00001 \times 0.5016$$

<u> </u>			M ·	uu.
1		ľ	150t Ju	
		+15	6×10 4 10	2.6×10-4 1x
R.	4	-25	10×10-4-10	4.5×10-4 1×
RV		+/5	6.5×10 4 1x	5.0×10 - 1.
	8	-25	10.5×10-4 1	5.0×10-4 1

Desnivelación de los apoyos

Generates
$$M'_{l} + m_{o} = 0$$

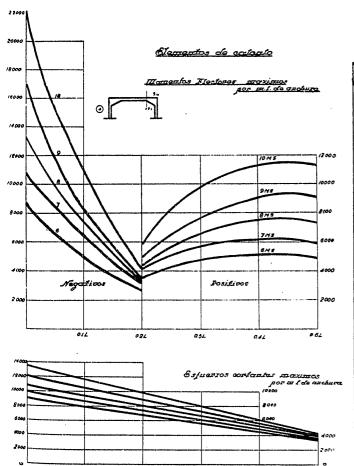
$$M'_{l} = 4Ek_{p} \propto (3\theta - 6\frac{\triangle}{L})$$


$$m_{o} = 4Ek_{p} \theta$$

$$m'_{o} = 2Ek_{p} \theta$$

			М	m'
		Δ	56 - 4 - 5 - 1 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1	18 × 4 1 1
		201	014 L	0.07 1
Pa	4	005	070 £	035 [
R.		0.01	010 Lx	408 [t
L	8	005	0.80 ½	040 <u>I</u>

l, eπ eπ .


Cuadro núm 3

Section	ļ			Juenza	E 0.0.				
	01	02	0 5	04	0.5	06	0.7	0.8	09
o	0.0650	01032	0.1250	01325	0.1260	0.1069	ō 0810	0 0533	0.0250
02	0 02.20	0.0008	0.0240	20074	ã 0260	0, 0320	0.0315	0.0233	0.0120
04	0 0150	0.0368	0.0670	01177	00740	0.0428	0.0195	00067	0.0015
05						0.0803			0.0070
m	00035	00135	00290	0.046	0.063	0.077	0017	0064	0.043

l l				. Zi	enco	ea.:					
		41	02	a3	04	06	-00	-07		0.9	10
	100	090	0 80	070	250	050	000	030	020	010	
		*04									
766-20-	100	090	085	075	062	0.50	950	027	016	200	0

Cuadro núm. 5

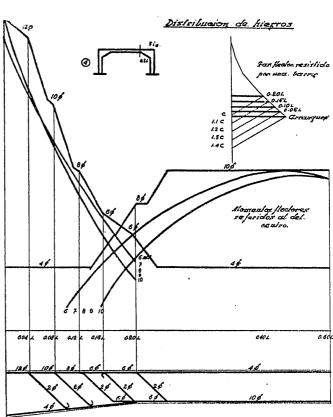


Tabla núm. 1. Resumen de los momentos flectores y cálculo de los dinteles

								0	1			But	But But			7	Luc 900	'n.			1	Carron of the Company		•
		S. S	Luz Om				7	1 252 F CEEF	ij					-	+	-				-	Mes			
		֓֡֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓					×	Mar			;	Mos	-		, W	+ \$	707	Mod	Mos	Z	+	-	Mos	Mos
	×	<u> </u>	200	Mos	No.s	Σ	+	ا آ	Mod	Mos	Z	+	1	•	1		-							
	:	+						_							- 0			7400	8450	7400, 8450 25/00	0	0	10900 12400	12400
	25.00	((26.30	2630 2950 8250	8250	0	0	3655		4150 12000	0	0	2580 0000 11300	000	200)					-	-,,,,,,,	21000
OUTE OUTE OUT))) ——)				. 1	*780	00/#/		20/50	8350	1230 15	350/5	200	1500 93	10 470	00821	18400	20150 8350 4230 15350 15700 24500 9370 4700 17400 18400 29800 JOSOO 3000 EULO	10500	2000	3	
6 brecan	12900	6270	2895	11500	00711	10000	2067	5	2000	`							- ·	250	\$	320	320	530	530 530	530
Ř	Ç	ć	3	720	, CK	, ,	907	021	170	130	130	/30	230	220	220	2/0/2	0/2					1	,	
Tempero	000	98	200		96/ 96/	3	2)) ·								0100 5450 5460 1820	546	0 1820	0	11200 6700	6700	6700 2240	2240	0
		74660	4550	1820	0	8000	4800	8000 4800 4800 1600	1600	0	7400	4450	7400 4450 4450 1480	200	+	5								1
Despite 1000 4330 1330	1000	200						L					- 0000	- 0	4000	1210160	40 1051	26900	2720	1664201	1520	12590	33770	33930
John 1500 1000 1160 1648014780 3235012200 8750 18525	3000	70007	7760	15400	14780	3235	1/2200	,8750	18525	18020	29680	12930	82008	000	1350	0/0/6/	; ; ;			8020 39680 2930 8930 8230 81320		,	09611	0/8/
POF 124	2007	2000	3	}					,	,	02027	0120	2930 7	440 7	3/0 //	1/00 50	10 350	0 8990	0206	2930 7440 2930 7440 7310 13100 5010 3500 8990 9070 22140 5840 9600 11500 1130	2840	0000	11600	2 / 2
Agr m. 1, 8100, 3630 2580 5/60 4930 10180 4010 2920 6/73	8700.	3630	2580	2/60	4930	10780	4070	2920	6779	0/00	25.50				1									
							;			Ç	,	(02)+	000	600	-60	c= 30(3	(3). w=	324.	10621)	- 32 4. (10 62) C= 30 (33). W= 32 4. (10 62) C= 33 7 (31). W= 36.4. (10 62)	7 (37)). w=	36.4-(1082
Peatro		12(25)	c=22(25) , w=23.8, (10 \$18)	23.8° (R	(8/8)		45(27)	3	C=245(21), w=26.5.(10p13)	Sign	7	\$ (50).	3	(V)	3		`		,				// / 03	12600
		64740	\$21) 385 318 (106) B12 356. (128	71.878	(8/9)	6-5	3(35)	3.5	16.6. (12)	618	C-36	(39).	w= 39.	0.(12%.	20) 6	c= 36(39), w= 390.(12\$20) c=41(44)-		44.3(12	(1256	w=443.(12\$21) c=47(50)	(20)	Ē	W= 00.1 (-7 7-7)	
	¥ ::	COCK	}	ا د			`								1					•				

Tabla núm. 2. Comprobación al esfuerzo cortante

														(,			9		
		3	ì			4	fux Im			1/10	Guz Bac	(Y X	Auz Smy	<u>></u>		71/100	The road	
			die out			.												720	790	Prila
	C	720	750	Pilar	0	0.24	79.0	***	0	780	75.0	0.54 Filas	0	700	20.2	xx tan	3			
)																	9		0000
	- C. E. C.	* KOO	0	2060	7070	2060 1070 4530	0	3080	3080 9000 5750	5750	0	4500	4500 11520 7400	7400	0.	5550	0550 15000 your	9006	0) H
and a series of the series of) } })		0,00	20,500	15400	7800		21800	Æ500	2900	3600	6000 21800 1500 1500 22800 17200 8200 9200 26000 18000 8580 11200	17200	8200	0026	26,600	18000	0856	77500
65500 19 200 1800 40 40 200 1310 1300 1300 1300 1300 1300 1300	19200	14 300	7800	4000		2	}					(600	600	0006	2400	2240	2400 2240 2240 2240 4200	2240	4200
Desainales 2.530 2530 2530 2800 2290 2290 2290	2.530	2530	2530	2800	2290	2290	2290		1,850	1850	1850	3000 1850 1850 1850 2800 6020		200		2400				
												•				(,0000	00000	06001	00000
Total 10090 10000 1936022220 10090		2000	, N	97/0	19360	22220	06001	12080	32630	24100	9750	14900	12080 32650 24100 9750 14900 36340 26620 10220 19150 40840 67640 10020 4400	20020	10220	05/6/	402400	22640	200	200
HOF DIG	27.370	20400	2000											1		0	18610	9740	36/0	8260
FOR 1716, 9.120 6310 3440 3230 9950 7410	9.720	6310	3440	3230	9950		3300		10.380	8030	3250	3970	4050 10.380 8030 3250 3970 12110 8820 3410 0380	8870	3410	0200				
							1						L							
Teasion max del hormiga	may s	del are	Kor.	State			430	430Kg/km			4.20 Agran	See Se		A	1.204	4.20 /g/cm2		A	4.10 kg/cm2	'Cest'
				Carre				5												

pórtico sencillo, es preciso considerar las nuevas incógnitas Δ y obtener nuevas ecuaciones, expresando relaciones totalitarias entre los elementos que componen la estructura. Así, por ejemplo, en el pórtico sencillo se obtiene esta relación cortando los pilares en la coronación y en la base, y expresando que la suma de todos los pares que pasan a ser exteriores es nula.

Como en todos los procedimientos corrientemente utilizados, en éste se prescinde de la influencia de las compresiones longitudinales y esfuerzos transversales, cuyos efectos son de muy poca importancia.

La elección del tipo de pórtico más conveniente se ha llevado a cabo considerando diversos dinteles de los estudiados en viga doblemente empotrada y tabiques con distinta rigidez elástica establecida en relación con la de aquéllos. En cada uno de los casos hemos determinado los momentos flectores correspondientes a todos los esfuerzos actuantes, para luces comprendidas entre 6 y 18 metros y alturas entre 2 y 8, comparando los máximos momentos flectores en cada sección con el momento de inercia correspondiente. Así hemos llegado a seleccionar los dinteles, que en ambas series triplican el momento de inercia central, mediante acartelamientos hasta el quinto de la luz en la primera y el cuarto en la segunda, más amplios estos últimos teniendo en cuenta que, además del aumento de espesor, suponen la presencia de un forjado inferior, y, por consiguiente, la eficacia de la viga en T para los momentos negativos.

Como esfuerzos actuaantes hemos considerado:

1) Peso propio y del pavimento;

2) Sobrecarga móvil;

3) Variación de temperatura - 15 a - 25" C;

4) Desnivelación de los apoyos en 4 cm;

5) Empuje de las tierras en uno (a) o en ambos lados (b).

Para los dinteles establecemos la hipótesis de actuación de los 1), 2), 3) y 4), pues el considerar, además, el 5a) sería demasiado desfavorable y con el 5b) no puede contarse en todos los casos. En cambio, para los tabiques suponemos además, la actuación del 5a) independiente o sumado a los anteriores.

Para la hinótesis más desfavorable de concentración de cargas hemos supuesto el ancho de una vía con la sobrecarga correspondiente, considerando que en las losas interviene todo el ancho de 3 metros, y que en las vigas se lo reparten las dos incluídas de un modo desigual, cargando una de ellas con el 60 por 100 del total. Así nos queda libre a cada lado una zona de 30 centímetros en las losas (con espesor reforzado por el sobrealto de acera) y media viga en las otras soluciones, que, además de constituir un refuerzo lateral, forman elemento para sustentación de los paseos.

El resumen de los cálculos efectuados es el si-

guiente:

A) Determinación de los momentos de empotramiento en dintel y tabiques, para varias posiciones de la fuerza unidad (cuadro núm. 1).

- B) Determinación de los momentos de empotramiento para variaciones de temperatura y retracción de fraguado, y desnivelación de los apoyos (cuadro núm. 2).
- C) Determinación de los momentos de empotramiento correspondientes al empuje de tierras en uno o en los dos tabiques.
- D) Deducción de las líneas de influencia de los momentos flectores y esfuerzos cortantes en las secciones más interesantes. (Ejemplo: cuadros números 3 y 4.)
- E) Obtención de los momentos flectores y esfuerzos cortantes máximos en las secciones más interesantes de cada una de las luces consideradas (cuadro núm. 5).
- F) Cálculo de espesores y armaduras en las secciones central y extremas de los dinteles (tabla número 1).
- G) Distribución de los hierros de la armadura principal en las secciones intermedias de los dinteles (cuadro núm. 6).
- H) Cálculo de la armadura secundaria de los dinteles cuando sea precisa, o comprobación de la resistencia del hormigón a los esfuerzos correspondientes (tabla núm. 2).
- I) Obtención de los esfuerzos más desfavorables para el tabique en las dos hipótesis siguientes: 1), máximo momento flector, y 2), máxima compresión longitudinal.

J) Comprobación de la armadura de los tabiques. En los modelos de la primera serie disponemos únicamente armaduras longitudinal y transversal de repartición, no siendo preciso armadura secundaria, pues la componente tangencial máxima de la tensión en los puntos más cargados no pasa de 4,5 kilogramos por centímetro cuadrado, considerando únicamente el hormigón; hipótesis muy alejada de la realidad, pues con la distribución de hierros adoptada los levantados absorben integramente las tensiones tangenciales en las zonas extremas, que son las más cargadas.

En la armadura principal hemos procurado emplear hierros de poco diámetro, para lo cual los hemos distribuído a razón de 10 por metro lineal en el centro, correspondiendo 12 del mismo calibre en los extremos, obteniendo así las separaciones mínimas compatibles con el buen hormigonado.

También hemos procurado conseguir una trabazón perfecta a lo largo de toda la estructura, para lo cual en los dinteles permanecen cuatro barras por metro lineal, tanto en la zona superior como en la inferior, y otras cuatro pasan de ésta, en la zona central, a aquélla, en las zonas extremas; a los tabiques pasan cuatro de las barras continuas del dintel, y otras cuatro suplementarias de los extremos, que aseguran una perfecta solidaridad. La unión de los tabiques con el cimiento se establece mediante anclaje de las barras verticales y adición de los hierros a escuadra, que justificamos en el artículo anterior.

El verdadero problema de armado en un pórtico está en el enlace de tabique y dintel, y lo trataremos con todo detalle en el artículo próximo, a la luz de las experiencias de toda clase que se han llevado a cabo en este elemento estructural.

¹ Siempre que exista una disimetría en la estructura, o en las cargas, es preciso considerar estas deformaciones lineales; son producidas por los esfuerzos longitudinales no equilibrados directamente. Así los norteamericanos las denominan side-sway».