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ALGUNAS APLICACIONES MECANICAS
- DE LA FUNCION DE GREEN

Por JOSE MARIN TOYOS, Ingeniero de Caminos.

Al presente trabajo le da el autor la finalidad de que nuestros investigadores recojan la suge-
rencia de aplicar las propiedades de la funcidn de Green a la resolucion de los problemas
de Mecdnica eldstica, 1o cual seria, a su juicio, de interés para el Cdlenlo de Estructuras.

En todas los tratados de Mecdnica elastica, al re-
solver las ecuaciones diferenciales a que el estudio
de la Elasticidad y sus aplicaciones dan lugar, se
obtienen las integrales particulares determinando en
cada caso las funciones arbitrarias de la integral ge-
neral. No hemos visto ninguno en que se haga apli-
cacién de la funcién de Green con la que los problemas
de estructuras eldsticas, que se presentan con aparien-
cia muy diversa, adquieren una sistematizacién uni-
fonme. :

No es nuestro propdsito hacer un desarrollo com-
pleto de célculo de estructiiras por aplicacion de la
funcién de Green, sino exponer su utilidad en algunas
aplicaciones sencillas, ver la uniformidad que adquiere
su aplicacién resolviendo cuestiones muy diversas, y
como nuestra preparacién no llega a mds, brindar la
_idea a mejores investigadores para que vean si estos
vestigios pueden abrir nuevos horizontes en la Ciencia
de las Estructuras, la fundamental de nuestra profe-
si6n,

La funcién de Green.

Si tenemos una ecuacion diferencial y homogénea,
con deflerminadas condiciones en los limites y de la
forma: .

d2y dy i
e py =+ p2 y=0; L1]
d x2 dx

en la que py y p2 son funciones continuas de ¥ en el
intervalo (g, b); si suponemos que y, e ¥z son-dos in-
tegrales particulares, linealmente independientes de la
ecuacién anterior, y formamos con ellas la funcion:

1 Yo (B) ¥, (%) — , (8) Yo (%) a<t<h,
2 %@y E) — 1 €)Y ()

se demuestran en los tratados de ecuaciones diferen-
ciales las siguientes propiedades (*):

'T(xxe)'.:'-’l:'

(*) Esta demostracién puede’ verse en el Curso Superior
de Andlisis Matemdtico para Ingenieros, de Navarro Borrds,
1942, phg. 379.

1.4 Que la funcién y (#1£) es una integral parti-
cular de la ecuacién [1].

2. Que la misma funcién y (#; £) es continua en
el intervalo (e, b). .

3.4 Que la derivada respecto a x es discontinua en
el punto de abscisa £, verificaindose en €l:

._‘il.) (] =1
ax|e=E+0 (dx x=E—-0

4.5 Que la funcién

b
y= [y @ at [2]
a
_es una integral particular de la ecuacion diferencial
completa :
d*y dy
s p——tp2y=q*); [3]
da® dx

siendo ¢ (#) funcién continua en el mismo intervalo
(a, b).

5 Que la integral particular [2] satisface las
mismas condiciones en los limites que la funcién
y (41 ).

La funcién y (v1£) es la llamada integral hasica
de la ecuacién homogénea [1], y también se denomina
funcién de Green con la notacién G (#1 6).

Si hacemos aplicacién de lo anterior al caso parti-
cular de la ecuacion diferencial

dzy 7
2 =0, Co4)
d &2 : L

con las condiciones en los limites (@) = (b)) =0, la
funcién de Green serd:

G (v, &)= Cra+Cq para a<x<§;
G &)=Cyr+C, para £<x<Db;
las condiciones en los limites nos dan:

C]a—i-Cgl:-—O » C3b+C{=0;

.
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la propiedad de la continuidad de la funcién propor-
ciona:
CrédCu= Cgé+ Cy,
vy la propiedad de la discontinuidad de la derivada:
(/‘3*“ Cl = l

Con estas cuatro ecuaciones, determinamos las
constantes de integracion, cuyos valores son:

c E—b ‘ u (£—D) C e E—u
Y a—b e a—b T a—b
b(E—a
N
a—b

con lo que la funcién de Green queda deteriminada,
y es:

G(X;E)=E~bx U(E."b)___i"h{

X — q)
a—>b a—>b a—b

para a <x<E;

E— b - a E—a
Gixty=m =By 28T 2 (x— D)
(x,6) a-—b a—>b a—20b

para E< x < b

FHagamos un cambio de coordenadas de modo que
@ esté en el origen, y llamemos [ al intervalo (o, D);
endremos :
l—¢
G (¥ 8= — v para o <a<§;

[—ux
G (v 8) =——i———.§ para  E<a <l

Analicemos una viga recta, de luz 1, apoyada en
los extremos y sometida a una fuerza unidad en ¢l
punto de abscisa £, y encontramos, inmediatamente

que la variacién de los momentos flectores viene ex-
presada por:

A o= __I.f_.,q- para o <x<§g;

(5]

l—ux
M=e———& para E<a <l
!

v vemos que los valores obtenidos son idénticamente
iguales w los que expresa la funcidént de Green para
la ecuacién [4], lo que ya indica una significacion
mecdnica de esta funcién en apariencia puramente
matemética. : :

~ Hallemos la derivada parcial de la funcién de
Green [5], y tenemos:

3G () I

para o< <£

I L
[6]
3 G (aq &
.___Eif_)_ - para <o <l
3

Hallemos también la ley de variacion de los es-
fuerzos cortantes en la viga antes definida, y tenemos:

: AM =t i<
4 e e = e para o y )
dx L b ’ E
. dM £
Eem =2 para £<x<l;
dx l

luego:

S G (v €
M=G (8 v .;z__i_t)_,
dx

Resulta, pues, que la funcién de Green de la ecua-
¢ibn diferencial [4] es la del momento flector de una
viga apoyada, de luz [, sometida a una fuerza unidad
en la absaisa £ la derivada parcial de la misma fun-
¢ién de Green es la funcién del esfuerzo cortante en
la misma viga. .

Si en lesta misma viga acttia una carga repartida,
expresada por ¢ (+), y aplicamos <l principio de la
superposicion de los esfuerzos y la propiedad anterior
de la funcién de Green, la fuerza elemental seria
¢ (&) d ¢ yla funcion del momento flector vendra ex-
presada por: ‘

M= f ; G &) () d 7]

Si consideramos independientemente la ecuacion
diferencial completa
d2y : ()
Cda? '
con las condiciones en los limites y (0) =y () =0,
y aplicamos la propiedad cuarta de la funcién de
Green, la integral particular de la ecuacién diferen-
cial anterior que satisface a los limites es:

y= f’Gm £ q(® dE, 8]
0

expresion exactamente igual a la que representa la
funcién del momento fléctor de una viga apoyada, de
luz I, sometida a la' carga repartida expresada por
q (%), lo que ya constituye una aplicacion de la funcion
de Green, como se verd mas adelante.
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Demostracién de algunos teoremas clasicos de
Elasticidad.

La funcion G (¥1§) es simétrica respecto a las
dos variables x y & (*¥), y de esta propiedad se deduce
que cuando la carga unitaria acttia en §, la funcién G
da el valor del efecto que se produce en la seccion 4
reciprocamente, si aquélla actuase en v, G represen-
taria el efiecto producido en la seccién &, loy que cons-
tituye una elegante demostracion del teorema de Max-
well en los casos de flexién de piezas rectas.

Supongamos una viga, de luz [, apoyada en los
extremos, en la que la funcién de Jos momentos flec-
tores sea m (#); consideremos que en la misma viga
actuase una carga ideal representada por mo.

ET (x)
apliquemos la férmula [8] para obtener la funcién
de los momentos flectores ideales que produciria la
carga indicada, y tenemos:

)

q meE
M= G(x,b)——>d¢;
,IO (x, 8 E16 &

sustituyendo en G los valores [5]:

_ £
M=/x _I_.Z_ig __’_71.(5)- de 4
0

E1()
I x m (&) .
+ [0 22— ) g 9
[ u-n g 19}
Pero al mismo tiempo, la ecuacion diferencial
d?y e (4)
dx? | EI(%)

nepresenta la ecuacién diferencial de la deformada de
la viga considerada, cuya integral particular es:

‘y=ﬂ0malﬁ%ﬂ=fVﬁiflﬁL&+

El o I ET(f)

L=t mB) .
1—/:( ; X E1E dE. [10]

Las férmulas [9] y [10] son idénticas y su iden-
ticidad demuestra que la deformada puede construirse
como una funcién de momentos flectores, lo que cons-
tituye uno de los teoremas de Mohr.

La férmula [10], por medio de algunas transfor-

. (*) La demostracion amalitica puede verse en el Curso
Superior de Andlisis Matemdtico para Ingenieros, de Nava-
rro Borrds, 1042, pag. 381 ‘

maciones de caleulo sencillas que no hace falta deta-
llar, puede ponerse bajo la forma:

x (1 mE .
) == ~— 1———& -—————"d‘ -
! sz "

- [ mn e, (1)

Jo ET()

y se ve que el primer término del segundo miembro,
dividido por , representa precisamente la reaccion Ry
que se produce en el apoyo izquierdo de la viga con-
siderada cuando estd sometida a la carga ideal
m (x)

; pues en efecto:
E I (x)

! m (E)
R/ X1 = | —§) ——=—dE;
P X ,[0( £) E1E £

1 [ m (&)
a=~]u—a—¥—ﬁ;
I Jo EI(E)
y, por tanto, la expresion [11] puede escribirse::

Y N ) PR TY
y=Rx joo 9 E [12)

Si tomamos (fg. 1.*) una seccion v y hallamos el
momento estatico del drea de momento, situada a la

Figura 1"

izquierda de v, respecto a v, obfienemos como valor
diferencial :

e (£)

ET()

ST
f _QIT_(.‘.EL(:"_“E) d&;
o ET®

expresion idéntica a la que figura como segundo tér-
mino del segundo miembro de [12], y, por lo tanto,
tiene la significacion mecédnica de ser el momento es-
tatico respecto a 4 del drea de momentos de una viga

m (9_

i1 (x
Derivemos la ecuacién [12], teniendo en cuenta

déX (r—E),

y el total

sometida a la carga ideal extendida a toda ella.
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que se trata de una derivacion bajo el signo integral,
y se obtiene:

. . e
4 g [FmE [13]
dx o ET®) ,

y esta expresion, recordando la identidad entre 9]
y [10] y su significado, representa, por um lado, el
coeficiente angular de la tangente a la deformada, y
por otro, la funcién de los esfuerzos cortantes de la
viga sometida a la carga ideal que venimos conside-
rando. La equivalencia entre estos dos significados

constituye la demostracién de otro de los teoremas de -

Mahr, puesto que resulta que la pendiente de la de-
formada se obtiene determinando los esfuerzos cor-

tantes de la misma viga cuando la carga sea_M(X)

E(x)
Si en la expresion [13] hacemos & =0, :
dy
dw !

lo que nos dice que el angulo de giro de la deformada
en el apoyo izquierdo viene expresado por la reaction
que en el mismo se produce cuando sobre la viga actia
la carga ideal tantas veces citada; es la demostracion
de otro de los teoremas de Mohr (¥).

Figura 2.

Consideremos dos puntos de la deformada, de
abscisas p y #, trazadas en ellos las tangentes a aqué-
lla; el coeficiente angular de cada una de estas rectas

es [13]: ’
(4 =R..f"'__m_<i .
(dx)p o EI() 2

£
[42) =p [0 2,
dx[n o EIE)
y el angulo 6 que forman entre'si las dos tangentes

serd

e=(_‘i_y_) _(ﬂ.) =f" @ e
dxlip dx/n 0 EI()

X
_(rm® g ("m®
fp BT fp EI) o

que demuestra otra de las formas de expresar el

(*) Strassner: Nucvos métodos, 1942, pag, 12.

N

primer teovema de Méhr, que dice: “El angulo de las
tangentes a la deformada en dos puntos cualesquiera
de una barra recta, viene dado por el irea, entre las
ordenadas de aquellos dos puntos, del diagrama de
los momentos flectores divididos por los momentos de
inercia de las secciones y por el coeficiente de elasti-
cidad”. '

Hallemos et valor de la distancia 8 (fig. 2.") desde
uno de los puntos considerados a la tangente en el
otro:

dy dy)
— ] —— -] n A
§ = Yo (dx)ﬂxp i (d«\" n

e

'l .
-yp _yn —1‘ (ﬂ - P) ("—Z)
ax/n

] dx;

ds

y como puede admitirse d s = d x, sin error sensible,
o dy
b=y, =yt (n— ———) ;
p n F P) (dx n

aplicando los valores determinados en [12] v [13l,
y simplificando, se llega sin dificultad a:

Ce no. m (§) d
? /p(e P

que demuestra el teorema de Mdhr, que dice: “La
distancia desde un punto de la deformada a la tan-
gente en otro punto de esta misma curva, viene dada
por el momento estatico con relacion al primer punto
del 4rea citada en el teorema auterior para los dos
puntos considerados” (*).

Resolucién de algunos problemas
de estructuras.

Hasta aqui hemos hecho aplicacion de la funcién
de Green para demostrar algunos teoremas clasicos
en el calculo de estructuras. Es también interesante
ver como con la misma funcién se resuelven proble-
mas de estructuras. _

Consideremos el caso mds sencillo de una viga
recta, de luz 1, apoyada en los extremos y sometida
a una carga constante p. ‘

" Aplicando la férmula [7] se obtiene directamente
la funcién dg los momentos: ,

1 !
M=foG(X4E)P-dE=PfoG(X‘ 6 dE:

(*) Fernindez Casado: Céleulo de Estructuras reticulares,
1044, pAg. 19, - :
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y poniendo en G los valores [5]: ' y la funcién derivada de la defonmada es:
o dy 13G(x,8) m(—§)
) X [—Xx ! | —¢& Bl A ’ de;
M:pf EdeE--p cJCdE—= dx /0 ox LEI ’
0 [ x I
_p=x [* 4 P (U as ap‘liga}ntdo los valores [6] y suponiendo la viga de
T /o 5 7 (-8 seccién constante:
dy m X m ! o
;1 = [—8)dt +—— | (—8dE=
M—.—Z—PX(I'—X)- dx l“El/oE( g H—FEI x( B
' Sea ahora la misma vigé, sometida a una carga = 3xt—0lx28).
triangular y simétrica, con valor maximo p en el OLET
centro. El giro en los apoyos se obtiene haciendo en la
La funcién de la carga serd: ecuacién general x =0y # =1,y se obtiene:
2px l (ﬂ) —.mt, (,‘_1)’_) —_.mL
] para o<.vr<?; dx o 3EI \dx i 6EI
Estudiemos la viga empotrada en un extremo (sea
2p(l—x) l el derecho) v apoyada en el opuesto. :
——— pra ?<x<,,; recho) y apoy [

la ecuacion de log momentos de o a L serd :

p
O OO T T

2
[ . 2pE , 2p( -8
M= 2 il - ol SR
fo 6 (x oL dH/LG(x,a =
. 2

y poniendo G explicita se tiene: M,
2p Iz Figura 4.
_2p(—x) (¥ . 2px (2
M==PE=3 (Pegry SBR[ (-pedit
{ 0 e x . ] -~ fs
Iin este caso, las condiciones en los limites para
2px (! l xt ! N SO .
+ £ f (—bdt=px ("4 _ 3_1) la deformada som tres:
¢ !
7 : y(0)=0; y®=0; ¥y (=0,
~ Tratemos ahlora de determinar los giros que expe- y la funcién de Green no admite mas que las dos
rimenta una viga recta apoyada, cuando en el extremo primeras, por lo que existe una superabundancia de
izquierdo se le aplica un momento ne. primer grado, que es precisamente el grado de hiper-

estaticidad de la estructura. Supuesto conocida la re-
accién hiperestatica m y llamando M; a los momentos

k“’"x N
l -\l isostaticos, cuando la viga estd apoyada, la funcion
de los momentos €s:
]
| .
X
| " . M(x)=M; () — -—’"I :

y la funcién derivada de la deformada:
o [1200mD W g,

~ Figura 3.

La funcién de los momentos es lineal: dx o 9x . EI(®
lb__(i:)_ como para & =1, i{?— = (Q se tiene la condicién:
l ’ ] x
vy , . /2

la ecuacion diferencial de la clastica es: f (_G_BQ)%E_)) . . ——El‘zl(—fz)— dt=0;

. ‘ 0 x= 2
p ' d2 { —_x .
Co. y y_.n ¢— ; de la que se deduce el valor de m, y €l problema se
%2 “EIlL '

reduce a otro isostatico de solucién inmediata,
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Desarrollemos el calculo para ¢l caso de carga p,
uniformemente repartida:

M(’Q:-:‘; px(—x) ——ﬂ‘;iq(ﬂ_(!.;&:’_,.,m“);

2 {
M TR (.E_“_:;"L_.U_'_) .
dx o ! 2 (]
1 - £ —_— ’
+ / =5 (_p_(é._)ﬂ.__ LR =
x [ 2° {
=P (1P = GIx2 44 xh) — ﬁ( _3_’\_),
24 0 l

haciendo .+ = [ e igualando a cero, se obtiene:

1 2
7n-—8~]‘91 .

Como dltima aplicacién, resolvamos el problema
e la viga empotrada en los dos extremos.
T.as condiciones en los limites son cuatro:

v(y=0; y(Oh=0; ¥ (=0 »(@=0;

luego la superabundancia de condiciones es de segundo
grado, como lo es tamhién la hiperestaticidad. Supon-
gamos conocidas las reacciones hiperestaticas en los
extremos 11y v s, con lo cual la funcion de momen-
tos es:

M(xX) = M, — m, — —"'3--“7—”-1 X

o)

y la funcién derivada de la clastica:

f.i_y,/’aG(x,ew ME
0 3x E (%)

£
o

dx

como se han de verificar las condiciones:

) = [[pomn) M gm
d.\‘ x=0 0 sx EI(E) b )

(dy) xjf(aa(xls)) ME
dx/x=1 0 dx |1 EI(®)

g
<

de este sistemna despejamos ios vatores de my y de o,
y el problema se ha transformado en otro isostatico
que no tiene dificultad.

En el caso de carga uniforme p, extendida sobre
toda la viga, y como por razones de simetria m; = iz,
la funcién de los momentos es:

1
M(x)= P (—x)—m;

_s_i..y__*_/-"ﬁ_(

dx 0o [
/’ =& (p
x { (

=L p—61x44xn)— T (1—2x);
2 2

+

/’E(["Q___ £l
-———-—2 .m)dq{-
E(l—¢

2

—%) ——m)daz

=

haciendo + == 0 y & = [ ¢ igualando a cero, se obtiene
en los dos casos:

1 2
m——T:;—p =,

% ok ok

Al terminar este trabajo, abservard el lector que
no hemos descubierto nada nuevo; todo ha quedado
reducido a demostrar cuestiones y a resolver sencillos
problemas de todos conocidos; perol para llegar a los
resultados hemos utilizado un procadimiento distinto
a los que se emplean en los tratados mis modernos
y han servido para poner de manifiesto la fecundidad
de Jas funciones de Green, con fas que los hemos
obtenido con gran rapidez y uniformidad.

Si tiene alguna importancia, es ésa, la de lanzar
una nueva idea que, si es recogida por nuestros inves-
tigadores, puede servir para producir mejores frutos
o para demostrar que hemos perdido el tiempo en un
entretenimiento matematico.’




