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MAS APLICACIONES MECANICAS
DE LA FUNCION DE GREEN

Por JOSE MARIN TOYOS, Ingeniero de Caminos.

Comg dice cl autor en los primeros pdarrafos, presenta wna nucva aplicacién de la funcion de

Green, que se refiere o las estructuras reticulares, v hace constar, al final, que el tema no esti

aJotado ¥ espera lograr alguna otra aplicacidn, que ofrecerd a los lectores que se interesan por
estos temas.,

II

En el nimero de septiembre de 1946 publicamos
Algunas aplicaciones mecénicas de la funcion de
Green”, dando a la luz cuantas habiamos encontrado
en €] estudio de esta interesante funcidn, compatible
con el tiempo que el trabajo diario permite dedicar
a estas cuestiones, que constituyen el ocio de otras
actividades.

El tema es tan sugestivo, quizd por no ser obliga-
torio, que hemos seguido estudidndolo, y al llegar a
nuevas aplicaciones, las reunimos para formar la con-
tinuacion de aquel primer articulo; como éste, el actual
comprende una parte tedrica y otra de apllcacmn pric-
tica,

[y

Teorema de Clapeyron.

Tiene por finalidad, como es sabido, encontrar una .

expresion que ligue los momentos hiperestaticos de tres
apoyos consecutivos de una viga continua apoyada.
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Figura 5.

Consideremos dos tramos de esta viga, cuyas lu-
ces son (fig. 5°) I y lk41, sustentados por los apo-
yos k—1, By k- 1. A causa de los esfuerzos soli-
citantes, la viga y sus apoyos han experimentado una
deformacién, siendo la magnitud de la de éstos 8,
Ok Yy 8g41, respectivamente. El sistema de cargas da
lugar a una variacién de momieentos flectores, M (.r),
y sabemos que la deformada satisface a la ecuacion:

@y M@
dx®  EI (%)

" pero para poder aplicar la funcién de Green es preciso

que se satisfagan las condiciones de los limites en los
extremos (*); es decir, que

r=0;

y=0 para

v=le ey
lo que no se verifica en este caso si se toma como eje
X la directriz de lla viga; perc si referimos la defor-
mada al eje de abscisas A4 B, las condiciones de los
limites quedan satisfechas, se puede aplicar la expre-
sién [8] (*), y se obtiene directamente:

e+l
M (€)

= d§;
7 G 8) —— 5T

y para el valor particular de » = 1 , resulta:
%+%¥1

M@
nk:fG(lk.E) £l @) dE. [14)

0

Esta es la expresién mis general del teorema de
Clapeyron, puesto que con ella se obtienen directa-
mente las deformaciones en los apoyos y de' éstos se
deducen los momentos flectores, sean cualesquiera los
tramos de la viga que se consideren y las caracteris-
ticas particulares de éstos.

Esta expresion, con toda su generalidad, resulta
poco préctica, pero vamos a ver como de ella se dedu-
cen las que figuran en términos finitos en los tratados
y manuales,

Si consideramos abscisas & para el tramo [, a par-
tir del apoyo k — 1, y abscisas & para el tramo 1z 4y
a partir del apoyo & -1, la expresién general [14]
puede escribirse asi:

Ige
4 ME
nﬁfo(k,a Fre dEt
o (1]
! M)
+fo(tk+,,2) B4

0

*) Ruvxsr,\‘\nml Onras PUBLICAS. Septiembre de 1046.
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La ley de momentos M (), M (¢), producidos por
las cargas solicitantes, se descompone e dos: la de-
bida a los isostaticos y la que producen los hiperesta-
ticos. Cada uno de ellos da lugar a una deformacion
que, particularizada en el apoyo k, resulta:

e =Mgn T ki

Calcularemos separadamente cada uno de los su-
mandos, aplicando la férmula [15].

—

Figura 6.*

La funcién G tiene por variacién una ley triangu-
lar (fig. 6.%), cuyo valor para =1, se obtiene apli-
cando [5] (*), y vale:

Lol
Gy, I) = ——EEL
Ik+’k+1

y, por lo tanto, G (I, &) y G (k41 ¢), valdran:

l 1
G () =—E & s Gy 8)=—
. k+v

let le *

Siendo My—_1, My y Mgy, los momentos en los

apoyos, M (£) en los dos tramos sera, teniendo pre-

sente que consideramos unicamente los momentos hi-
perestaticos

M, — M,_ )¢t
M@ =My, -+ — hoV?
I
M,— M, )&
ME) =M+ (M — Mip ) €
llc+1

Con esto tenemos los elementos necesarios para
aplicar la férmula [15] a Jos momentos hiperestaticos
y calcular ngp -, que serd:

Iy
l M, —M,_))E
mm={ ket 1 E(Mk_‘+( k k—1)c) e
J L+l I, EI()
Ik 41
-+ lk

—
I+ Tk

” (Mk+‘+(Mk"Mk+1)E') de’

+
J e+l g4

(*) RevisTa DE OBRAS PUBLICAS. Septiembre de 1946.

EIE)

Consideremos constante €l momento de inercia de
cada tramo, aunque variable de uno a otro, y sean I,
I k41, efectuando las integraciones, que no ofrecen
ninguna dificultad, se obtiene: '

lk'lk+1 \Ik
My = ———— | = (M _ +2M )+
g 11

-+ I3 (Mk-{—':’l"sz)]'

k41

Calculemos ahora la deformacion ny; debida a los
momentos isostaticos, aplicando la misma férmula

[15], y tenemos:

I I M, €
k1 i (&
Tt =T /E g 5T
etk ) k
g4

e f ¢ g,
I A L4 ) Elhyr

Las integrales que figuran en esta expresion son,
precisamente, los momentos estaticos a la izquierda, en
el primer tramo, y a la derecha, en el segundo, que po-
demos representar, como €s usual, por: :

I I
o= [em@a )= [ €M@
0 . 0
v queda la expresion:

g Mple
e+ letr Elg

M)t

Net = 17

Sumando las expresiones [16] y [17], se obtie-
ne gyt ' ;

e+l [lk |
o= L | R oM +
LY TTAER AN [ k
Ly | Loy (M
-+ (Mg y +2Me )1 4 - +
Lpr T tlegr El
Ig My 18]
Letlepr Elggy

Ahora, la deformacion total 8, en el apoyo k, se
puede expresar asi (fig. 5.%):

e 11

b =g+ Bp— 1 =
'lc‘+lk+l

+b I
Spypy— 3
oty

sustituimos, en lugar de. 7, su valor [18]; sim-
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plificamos y se obtiene la ecuacion de Clapeyron en
términos finitos :

-lk : ]
Mk—1T+2MA( + +1)+Mlc+1 e
Ik -’k-}-l Ik+1
M M - 5 —3%
=-—6[( i Ik I My )ier ]_6E(°k—1 ko,
: I I gy ligess Iy
5, =0
+_k_|1_k) [19]
ey o

la que, comparada con la [14], tiene menos generali-
dad por exigir que cada uno de los tramos sea de
moniento de inercia constante, pero es de mejor apli-
cacion préctica.

Vayamos descendierdo a casos particulares y su-
pongamos que toda la viga tenga el mismo momento
de inercia, [y = I, = I, resultando:

My G2 M (AL )My Ly =
T (M, M), ] —0
=-——6[( i Ik +| 1)h+1]_6E1(°k+1 °lc_1__
b e I
By — By |
__|_‘+—1__) [20]
ey

Supongamos ahora que todos los apoyos son rigi-
dos, y la expresién [20], al hacer 8,_,=238,=
. . . . /

= 3dr4+1=0, se convierte en la siguiente:

My b+ 2M (el )+ My gy ey =
—6[ My )y -I- (M )1 ]
Lok e

Supon‘gamos también que los tramos de la viga

son de la misma luz, con lo que /=l 4 y la férmula
se reduce a:

(21]

Moy My My = = 0 D + Yy 22

~ Las formulas [20], [21] y [22] son las que, por
tener mas aplicacion, se encuentran en todos los ma-
rivales.

Si el tramo k estd sometido a una carga uniforme-
mente 1epar¢1da, Pic,y €l tramo k4T a otra, pryg,
los valores de los momentos estéticos son:

I

C i Ic

My = etp e, —pas=2E"0,

(M )y, _jEZP."E(Ik ) dE N

ety
U 1 U ’ ’
[Mt)k+1=[€*‘EP/c+1-E(1k+x’-‘E)dE=
| . | .
_ Pegr e

24

y la ecuacién de Clapeyron sera en este caso [21]
M e +2M (G + 0 )+ My b =5

1 .
=—7 (P Py + Pigor Brg ) (23]
Por altimo, si los tramos son de igual luz y some-
tidos a la misma carga, p, la ecuacién anterior se
reduce a:
‘

M st
1AMyt My gy = — 7 [24]

La funcion de Green en las estructuras
reticulares.

Consideremos una barra cualquiera, 4 B (fig. 7.%),
de una estructura reticular en la que admitimos que
no experimenta mis que deformaciones angulares en
los nudos; estd sometida a un régimen de cargas que
produce una variacién, M (), de momentos flectores

¢

Figura 7.*

Podemos estudiar la barra A B independientemente
del resto de la estructura y considerarla como apoyada
en los extremos, si en éstos aplicamos las reacciones
hiperestaticas que la ligan a aquélla. En estas condi-
ciones se verifica la ecuacién:

d*y
dx?

M (x) .
EI(x)

y como no existen, por hipotesis, deformaciones li-
neales, la ecuacion de la elastica o deformada serd
directamente por aplicacion de la funcion de Green:

|t M (&)
= G (&, &) —————d §; 25
y fo 07 ¢ 28]
y coxﬁo_: ‘ . '
(==¢ , para 0<t<u;
G (%, 8) =
(=8 4
' — para & <§<lI;
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la expresién anterior puede escribirse:

— x'(l—x)E M(E) dt
y fﬂ 7 E1® £+

ta=8x M@ 5, _ ' [[Fu—ne MO
+fx — e e ), T e

+f' (l——E)xM\dE- [26]
x 1€ |
Si en la estructura que se estudia es ya conocida
M (%), se obtiene asi directamente la ecuacién de la
directriz deformada; si es desconocida la ley de meo-
mentos, la’ ecuacion [26] o su derivada permiten esta-
blecer ecuaciones de condicion para determinar los
momentos flectores, problema que se présenta con mas
frecuencia que el anterior. '
Analizando la expresion [25], tenemos que G (2,8
es un momento; luego sus dimensiones son F L, y
éstas son también las de M (§); las dimensiones del
~ coeficiente de elasticidad: E son F L2, por representar
una fuerza por unidad de superficie; el momento de
inercia tiene L* por. dimensién; aplicando estos valo-
res, las dimensiones de y son:

FL-L

< =FL,

que representan un trabajo y, por lo tanto, la ecuacion
no es homogénea por ser y una longitud; para que le
sea, hay que multiplicar el primer miembro por la
fuerza unidad, que designaremos por 1, sin que se
altere por ello su representaciém. Como G (#, §) re-
presenta el momento flector producido por la fuerza
unidad situada en la abscisa # de la viga isosttica de
luz 1, podemos también representarlo por ¢l simbolo
M, y entonces la ecuacion [25] se representa por:

U
- MM
1.y, = —_—d
Vs f -y 3
que es una elegante demostracion del teorema de los

“Trabajos virtuales”, de aplicacion en el cilculo de
estructuras.

Aplicaciones. — Supongamos el portico de la figu-
ra 82, cuyo dintel estd sometido a la carga uniforme-
mente repartida p kilogramos por metro, y que ya co-
nocemos la ley de variacion de momentos en el dintel,
que es: C

1 “A 9 I '
M) = p () e g=_t2"_
2 62+K) Ll

~ Aplicando la férmula [26], la ecuacion de la de-
formada sera:

1 (= ' 1 2
= — ] (= —pli(l =) ——P
y .Elgon( x);[zpcu - s |t

I o
+f (t—e)x[—;—pw—a—ﬁj’:?)ﬂde;

7 —
I;
1, 4
/4
'm}a

Figura 8.*
efectuando la integracion y simplificando, se obtiene:

y ==

pr(v—1) [a2—lx—1I2 " 12
12E1, ( 2 24K )

‘La flecha maxima se obtiene para » = -l—-'y vale:
. 2

_ Cplt 5 1 )
V=T TRE ('é" 2+K)’

si la misma viga estuyiese apoyada, se sabe que la
flecha maxima €s: .

"
3R4EI,

y se ve claramente que las uniones con los pilares
produce una contraflecha: :

plt

= e,
NETTREL YK

La deformada tiene, como debia de ocurrir, dos
puntos de inflexién, simétricamente colocados respecto
al centro del dintel, cuyas abscisas son:

x=-’-(1 . V 243K )
2\ 3Q+K)

Estudiemos a contifuacién el problema contrario;
es decir ; que en el mismo portico de la figura 8. que-

" remos determinar la ley de momentos, ahora desco-

nocida.
Por razones de simetria, los momentos en los nu-
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dos han de ser iguales; los designaremos por n1, y la
ecuacidén de momentos sera:

1
M(x)=—;-px(l——-x) —m.

. Derivamos con respecto a .+ la funcion [206],

vy tenemos:

7' EIUG?((&? f( ﬁd(g]d&

aplicando valores, se obtiene:

dy BRI RS B —m
> Emf e[zpsu £) m]ds+

El, f =9 [—PE(’—E)—-m]dE,

sin que sea necesario desarrollar esta expresion, porque
dy
L dx
izquierdo, o sea para & =0, el primer término .se

anula y qu'eda tnicamente :

como lo que interesa es el valor en el extremo

T IO P

2EIL \ 12 ' 127]

Pero este angulo de deformacion es el mismo que
habra experimentado el pilar correspondiente en la
cabeza superior, y su valor, teniendo en cuenta que
el extremo inferior estd empotrado, es:

mh mkl
=
. 4E 1, 4E],

; (28]

como consecuencia, se ha de wverificar {27]=[28],
que es la ecuacién de condicidn que permite calcular
el valor de m:

1 ( pl2 ) mkl
2EL, \ 1z )T 4B,

conocido esto, la ley de variacién de los momentos
flectores en el 'dinte] es: )
b2

que es precisamente la miisma.que se tuvo en cuenta
en el primer problema.

Hagamos otra aplicacion al pértico triple repre-
sentado en la figura 9.4, en la que también se indican
sus caracteristicas y la carga a que estd sometido, Por

simetria, los momentos que se produzcan en los nudos

son iguales; asi que basta con estudiar uno de ellos:
el izquierdo; llamemos i al del tramo izquierdo; i1,
al del derecho, y sobre el pilar actuard #m — .

NG ARENENNENARNNOETARINEREERNARNNARES)|

3l m\m 21 794

I A¥
' N
2L £ i A

- [

Figura o.*
La ley de momentos del tramo izquierdo es:

1 21 Imux
‘ M (2) = px (-——‘3 —.‘V) _ 71 ;

el angulo de deformacion en este tramo, para 4 =1:
—2 [fl.T1 g2l Imt
0 = e — —_— dt =
! IEIlfoElQpE.(S .E) 21]e

81 pL
= m
27131( T )

La ley de momentos en el tramo derecho es:
1
My (2) = 0 pa(l—a)—my;

el dngulo de deformacién para v =0:

9

0“_2E”‘[ ( —q)[—px(l—x)—m,] tE=

=L [(pE_m
2EI \ 24 2
El angulo de defonnacmn en la cabeza superior
del pilar es:
3L(m~—my) _

T
Como se ha de verificar que =103 y 82 =83
resultan las dos ecuaciones:

3 1{m —my)

81 P2
(——-———- + m}= — m=10,101 p I2;

27E1I 18 16E1I

l P2 "y 3 0(m—my) : ‘
A 2T Y = 0,030 p 2.
2E1 (24 2) w6E1 ) MmT R0
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Conocidos estos valores, el problema estd resuel-
to, pues las variaciones de los momentos flectores en
el tramo izquierdo y en el tramo central seran, respec-
tivamente :

1 21 0,101 12 x
Ml (‘) —'P v ("’3—'—‘”) —
—1

3

f) .
=—(1,0911—34);
o ¢ ¥)

1 .
M, (%) =7p.¢' (I—a)—0,030p 2=

- ,,[ ”(lz—’v) — 0,030 z2]~

La variacién de momentos en el pilar es una recta;
en la cabeza superior, el valor es —o,101p P+
+0,030pR=—0071 p¥ y en la inferior vale
40,0355 p . En la figura 10 se representan estos
momientos,

.

Con estos ejemplos se ve claramente que la apli-
cacién de la funcion de Green a las estructuras reti-
culares puede ser Gtil, y en ellos se ve que sigue en-

TFigura 10,

contrandose la uniformidad, ya puesta de manifiesto
en los casos estudiados en el articulo anterior,

El tema no estd agotado; puede dar mayores fru-

“tos; si logro llegar a ellos, los conocerdn los lectores
‘de la REVISTA que sientan interés  por estas cuestiones.



