Revista de Obras Públicas

Portada del Número 3542 (Monográfico)

Revista de Obras Públicas

2013 / Número 3542: Inundaciones y planificación hidrológica (Monográfico)

Modelos hidrodinámicos para reforzar las mejoras en las estimaciones del riesgo de inundaciones

Hydrodynamic modelling to support enhanced flood risk estimation

Falconer, Roger A; Xia, Junqiang

Presidente de la IAHR y director del Centro de Investigación Hidroambiental (HRC),Facultad de Ingeniería, Cardiff University,(Cardiff,UK);Profesor visitante de la Royal Academy of Engineering, HRC (UK) y profesor, State Key Laboratorio Estatal de Recursos hídricos e Ingeniería Hidroeléctrica, Wuhan University(China)

Fuente: 2013, 160 (3542): 7-26

Resumen en español

En este artículo se presenta un nuevo enfoque sobre la evaluación de los riesgos de inundación a largo plazo, de acuerdo con el informe sobre predicciones de inundaciones de UK Foresight Future Flooding. Un modelo morfodinámico ha sido desarrollado para simular procesos como el transito de avenidas, el transporte de sedimentos y la evolución correspondiente de los cauces. El modelo se emplea un doble enfoque, con un planteamientorefinado del mojado y secado; usando dos formulas de la velocidad incipiente de vehículos inundados bajo distintos escenarios para comprobar la estabilidad de vehículos en avenidas; y un modelo numérico integrado ha sido desarrollado para predecir avenidas y los riesgos correspondientes a personas (niños y adultos) y de la propiedad (vehículos y edificios).

Palabras clave:

Inundación, riesgo, modelización, Reino Unido, sedimentos, contaminación


Abstract

This paper presents a new approach to long-term flood risk assessment in accordance with the UK Foresight Future Flooding Report. A morphodynamic model has been developed to simulate the processes of flood routing, sediment transport and corresponding bed evolution using a coupled approach, with a refined wetting and drying approach being used; two incipient velocity formulae for flooded vehicles under different scenarios were proposed for assessing stability criteria of vehicles in floodwaters; and an integrated numerical model was developed to predict the inundation of flash floods and the corresponding flood hazards to people (children and adults) and property (vehicles and buildings).

Key words:

Flood, risk, modelling, UK, sediment, pollution


Descargar artículo a texto completo en formato pdf Artículo a texto completo en formato PDF


Referencias bibliográficas
[1] Abt, S.R., Wittler, R.J., Taylor, A. and Love, D.J., 1989. Human
stability in a high flood hazard zone. Water Resources Bulletin
25(4): 881-890.
[2] Begnudelli L and Sanders BF. Conservative wetting and drying
methodology for quadrilateral grid finite-volume models. ASCE
Journal of Hydraulic Engineering 2007; 133(3): 312–322.
[3] Bellos, V., Soulis, J. V. and Sakkas J. G., 1992. Experimental
investigations of two dimensional dam-break-induced flows. IAHR
Journal of Hydraulic Research 30(1), 47-63.
[4] Bonham, A.J. and Hattersley, R.T., 1967. Low level causeways.
University of New South Wales, Water Research Laboratory,
Technical Report No. 100.
[5] Bradford, S. F. and Sanders, B. F., 2002. Finite-volume model
for shallow water flooding of arbitrary topography. ASCE Journal of
Hydraulic Engineering 128(3), 289-298.
[6] Bryant, E.A. and Haslett, S.K. (2002) Was the AD 1607 coastal
flooding event in the Severn Estuary and Bristol Channel (UK) due
to a tsunami? Archaeology in the Severn Estuary, 13, 163-167.
[7] Cao Z, Li Y and Yue Z. Multiple time scales of alluvial
rivers carrying suspended sediment and their implications for
mathematical modeling. Advance in Water Resources 2007; 30(4):
715-729.
[8] Cao Z, Pender G, Wallis S and Carling P. Computational dambreak
hydraulics over mobile sediment bed. ASCE Journal of
Hydraulic Engineering 2004; 130(7): 689-703.
[9] Capart H, Young DL and Zech Y. Dam-break Induced debris
flow and particulate gravity currents. Special Publication of the
International Association of Sedimentologists (eds. Kneller B,
McCaffrey B, Peakall J and Druitt T) 2001; 31: 149-156.
[10] Costa JE and Schuster RL. The formation and failure of
natural dams. Geological Society of America Bulletin 1988; 100(7):
1054-1068.
[11] Defra and Environment Agency (EA), 2006. Flood and Coastal
Defence R&D Programme, R&D outputs: Flood Risks to People
(Phase 2 Project Record, FD2321/PR). environ/fcd/research>.
[12] Fagherazzi S and Sun T. Numerical simulations of
transportational cyclic steps. Computers and Geosciences 2003;
29: 1143-1154.
[13] Ferreira R and Leal J. 1D mathematical modeling of the
instantaneous dam-break flood wave over mobile bed: Application
of TVD and flux-splitting schemes. Proceedings of the European
Concerted Action on Dam-Break Modeling, Munich, 1998; pp
175-222.
[14] Foster, D.N. and Cox, R., 1973. Stability of children on roads
used as floodways. Technical Report No. 73/13, Water Research
Laboratory, The University of New South Wales, Manly Vale, NSW,
Australia.
[15] Fraccarollo L and Toro EF. Experimental and numerical
assessment of the shallow water model for two-dimensional dambreak
type problems. IAHR Journal of Hydraulic Research 1995;
33(6): 843-864.
[16] Gallegos HA, Schubert JE and Sanders BF. Two-dimensional,
high-resolution modeling of urban dam-break flooding: A case
study of Baldwin Hills, California. Advance in Water Resources
2009; 32: 1323-1335
[17] Gordon, A.D. and Stone, P.B. 1973. Car stability on road
floodways. The University of New South Wales, Water Research
Laboratory, Technical Report 73/12.
[18] Ishigaki, T., Baba, Y., Toda, K. and Inoue, K., 2005.
Experimental study on evacuation from underground space in
urban flood. In: Proceedings of 31st IAHR Congress, Eds: Jun
B.H., Lee, S.I., Seo, I.W. and Choi, G.W. Seoul, pp. 1116-1123.
[19] Ishigaki, T., Kawanaka R., Onishi Y., Shimada H., Toda K.
and Baba Y., 2008. Assessment of safety on evacuation route
during underground flooding. In: Proceedings of 16th APD-IAHR
conference and 3rd symposium of IAHR-ISHS, Eds: Zhang, C.K.
and Tang, H.W., Nanjing, China, pp. 141-146.
[20] Jonkman, S.N. and Penning-Rowsell, E., 2008. Human
instability in floods flows. Journal of the American Water
Resources Association 44(5): 1208-1218.
[21] Karvonen, R.A., Hepojoki, A., Huhta, H.K. and Louhio,
A., 2000. The use of physical models in dam-break analysis.
RESCDAM Final Report. Helsinki University of Technology,
Helsinki, Finland.
[22] Keller, R.J. and Mitsch, B., 1992. Stability of cars and children
in flooded streets. In: Proceedings of the International Symposium
on Urban Stormwater Management, Sydney.
[23] Keller, R.J. and Mitsch, B., 1993. Safety aspects of design
roadways as floodways. Research Report No. 69, Urban Water
Research Association of Australia, 51 pp.
[24] Kelman I (2002). Physical flood vulnerability of residential
properties in Coastal, Eastern England. Ph.D dissertation,
University of Cambridge, 324 pp.
[25] Kelman I and Spence R (2004). An overview of flood actions
on buildings. Engineering Geology 73: 297-309.
[26] Liang, D. F., Lin, B. L. and Falconer, R. A., 2007. A boundaryfitted
numerical model for flood routing with shock-capturing
capability. Journal of Hydrology 332, 477-486.
[27] Liao CB, Wu MS and Liang SJ. Numerical simulation of a
dam break for an actual river terrain environment. Hydrological
Processes 2007; 21: 447-460.
[28] Lin, G. F., Lai, J. S. and Guo, W. D., 2003. Finite-volume
component-wise TVD schemes for 2D shallow water equations.
Advances in Water Resources 26, 861-873.
[29] Lind, N.D., Hartford, D. and Assaf, H., 2004. Hydrodynamic
models of human instability in a flood. Journal of the American
Water Resources Association 40(1): 89-96.
[30] New South Wales Government (NSWG), 2005. Floodplain
development manual: the management of flood liable land.
.
[31] Penning-Rowsell, E., Floyd, P., Ramsbottom, D. and
Surendran, S., 2005. Estimating injury and loss of life in floods: a
deterministic framework. Natural Hazards 36(1-2): 43-64.
[32] Fraccarollo L and Armanini A. A semi-analytical solution for
the dam-break problem over a movable bed. Proceedings of the
European Concerted Action on Dam-Break Modeling, Munich,
1998; pp 145-152.
[33] Shand, T.D., Cox, R.J., Blacka, M.J. and Smith G.P., 2010.
Appropriate safety criteria for vehicles (Report Number: P10/
S1/006). Australian Rainfall and Runoff, 28 pp.
[34] Simpson G and Castelltort S. Coupled model of surface water
flow, sediment transport and morphological evolution. Computers
and Geosciences, 2006; 32: 1600-1614.
[35] Sleigh, P. A., Gaskell, P. H. and et al., 1998. An unstructured
finite-volume algorithm for predicting flow in rivers and estuaries.
Computers and Fluids 27(4), 479-508.
[36] Soares-Frazao, S., 2007. Experiments of dam-break wave
over a triangular bottom sill. IAHR Journal of Hydraulic Research
45(Extra Issue), 19-26.
[37] Takahashi, S., Endoh, K. and Muro, Z.I., 1992. Experimental
study on people’s safety against overtopping waves on
breakwaters. Report on the Port and Harbour Institute 34(4): 4-31.
[38] Yoon, T. H. and Kang, S. K., 2004. Finite volume model for
two-dimensional shallow water flows on unstructured grids. ASCE
Journal of Hydraulic Engineering 130(7), 678-688.
[39] Zhang RJ and Xie JH. Sedimentation Research in China.
China Water and Power Press, Beijing; 1993.
[40] Zhao DH, Shen HW, Lai JS and Tabios III GQ. Approximate
Riemann solvers in FVM for 2D hydraulic shock wave modelling.
ASCE Journal of Hydraulical Engineering 1996; 122 (12): 692-702.
[41] Zhou JG, Causon DM, Mingham CG. and Ingram DM.
Numerical prediction of dam-break flows in general geometries
with complex bed topography. ASCE Journal of Hydraulic
Engineering 2004; 130(4): 332-340.

Volver a la lista de artículos Volver a la página anterior


1 artículo publicado en esta revista por: Falconer, Roger A

Modelos hidrodinámicos para reforzar las mejoras en las estimaciones del riesgo de inundaciones
2013, 160 (3542): 7-26


1 artículo publicado en esta revista por: Xia, Junqiang

Modelos hidrodinámicos para reforzar las mejoras en las estimaciones del riesgo de inundaciones
2013, 160 (3542): 7-26

Realización del Colegio de Ingenieros de Caminos, Canales y Puertos con la participación del CINDOC.
Con la colaboración del CEDEX-CEHOPU y la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Madrid

Colegio de Ingenieros de Caminos, Canales y Puertos (España) Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Asociación Española de Túneles y Obras Subterráneas (AETOS)

© Copyright: Colegio de Ingenieros de Caminos, Canales y Puertos (España)

Propiedad del Colegio de Ingenieros de Caminos, Canales y Puertos (España). Prohibida toda reproducción total o parcial sin citar la fuente.
Property of the Colegio de Ingenieros de Caminos, Canales y Puertos (Spanish Society of spanish engineers). Reproduction by whatever means of the whole or any part of the content is strictly forbidden without reference to source